Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 16.065
Filtrar
1.
Sci Total Environ ; 927: 172003, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38569948

RESUMEN

Heavy metals can impact the structure and function of coastal sediment. The dissolved organic matter (DOM) pool plays an important role in determining both the heavy metal toxicity and microbial community composition in coastal sediments. However, how heavy metals affect the interactions between microbial communities and DOM remains unclear. Here, we investigated the influence of heavy metals on the microbial community structure (including bacteria and archaea) and DOM composition in surface sediments of Beibu Gulf, China. Our results revealed firstly that chromium, zinc, cadmium, and lead were the heavy metals contributing to pollution in our studied area. Furthermore, the DOM chemical composition was distinctly different in the contaminated area from the uncontaminated area, characterized by a higher average O/C ratio and increased prevalence of carboxyl-rich alicyclic molecules (CRAM) and highly unsaturated compounds (HUC). This indicates that DOM in the contaminated area was more recalcitrant compared to the uncontaminated area. Except for differences in archaeal diversity between the two areas, there were no significant variations observed in the structure of archaea and bacteria, as well as the diversity of bacteria, across the two areas. Nevertheless, our co-occurrence network analysis revealed that the B2M28 and Euryarchaeota, dominating bacterial and archaeal groups in the contaminated area were strongly related to CRAM. The network analysis also unveiled correlations between active bacteria and elevated proportions of nitrogen-containing DOM molecules. In contrast, the archaea-DOM network exhibited strong associations with nitrogen- and sulfur-containing molecules. Collectively, these findings suggest that heavy metals indeed influence the interaction between microbial communities and DOM, potentially affecting the accumulation of recalcitrant compounds in coastal sediments.


Asunto(s)
Archaea , Bacterias , Sedimentos Geológicos , Metales Pesados , Microbiota , Contaminantes Químicos del Agua , Metales Pesados/análisis , Sedimentos Geológicos/química , Sedimentos Geológicos/microbiología , Microbiota/efectos de los fármacos , China , Archaea/efectos de los fármacos , Bacterias/efectos de los fármacos , Bacterias/clasificación , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente
2.
J Chromatogr A ; 1722: 464895, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38608367

RESUMEN

Direct sample introduction thermal desorption (TD) coupled to GC-MS was investigated for the analysis of paraffinic hydrocarbons (HCs) from polluted sediments. TD-GC-MS is sometimes used for analysing paraffinic HCs from atmospheric particles but rarely for their direct desorption from sediments. So, the new TD methodology, applied to sediments, required development, optimization and validation. A definitive screening experimental design was performed to discriminate the critical factors on TD efficiency, from model sediments containing various organic matter (OM) amounts. Low molecular weight HCs had extraction behaviours markedly different from high molecular ones (HMW-HCs), but a compromise was found using very few sediment amount (5 mg), high temperature rate (55 °C min-1) and final temperature (350 °C). Linear HCs (n-C10 to n-C40) could be quantified using the matrix-matched calibration method, with very low detection limits (3.8-13.4 ng). The amount of the overall paraffinic alkanes was also determined as a sum of unresolved components between predefined equivalent carbon ranges. The developed solventless methodology was compared to an optimized solvent microwave assisted extraction (MAE). Matrix effects could be higher for TD compared to MAE but it depended on sediment matrix. When matrix effect was strong, particularly on HMW-HCs signal depletion, a dilution with pure non-porous sand was favourable for accurate quantification. The sum of resolved and unresolved HCs gave comparable results between MAE and TD extractions, with an exception of alkanes greater than C30 which were less quantitatively extracted via TD. However, TD-GC-MS was more sensitive than MAE-GC-MS. So TD-GC-MS is useful for analyzing sediments containing a great range of paraffinic HCs (C9-C34) and it has the advantages of being fully automated, with few sample preparation and operator intervention, using very low amounts of solvent, and generating few wastes.


Asunto(s)
Cromatografía de Gases y Espectrometría de Masas , Sedimentos Geológicos , Cromatografía de Gases y Espectrometría de Masas/métodos , Sedimentos Geológicos/química , Sedimentos Geológicos/análisis , Límite de Detección , Hidrocarburos Acíclicos/análisis , Microondas
3.
Sci Rep ; 14(1): 8946, 2024 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-38637621

RESUMEN

Oxygen deficiency is a major problem in the Baltic Sea. To study the impact of hypoxia on the functional diversity of benthic fauna and the possibility of macrozoobenthos recovery, data were analyzed in a gradient of oxygen conditions in the Gdansk Basin. The research conducted on the basis of biological traits analysis enabled us to analyze the number, type and spatial distribution of biological traits-a proxy for functions performed by macrozoobenthos. A significant depletion of macrofauna was already observed under conditions of reduced oxygen above the bottom, both in terms of functional diversity and biomass. Although taxa observed in hypoxia (DO < 2 mL L-1) perform a number of functions, the remaining species do not form complex structures in the sediments or cause deep bioturbation and bioirrigation. Moreover, their extremely low biomass plays an irrelevant role in benthic-pelagic coupling. Thus, benthic fauna under hypoxia is not an element that ensures the functioning of the ecosystem. We assess that traits important for species dispersal and the presence of taxa resistant to short-term hypoxia in the oxic zone above the halocline provide a "backup" for ecosystem functioning under altered diverse oxygen conditions below the halocline after cessation of hypoxia in the southern Baltic Sea.


Asunto(s)
Ecosistema , Oxígeno , Humanos , Oxígeno/análisis , Biomasa , Países Bálticos , Hipoxia , Sedimentos Geológicos/química
4.
Water Sci Technol ; 89(6): 1497-1511, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38557714

RESUMEN

Identifying vulnerable areas to erosion within the watershed and implementing best management practices (BMPs) are crucial steps in mitigating watershed degradation by minimizing sediment yields. The present study evaluates and identifies the BMPs in the Seybouse basin, northeastern Algeria, using the Soil and Water Assessment Tool (SWAT) model. After successful calibration and validation, the model demonstrated a satisfactory ability to simulate monthly discharge and sediment. Then, the calibrated model was employed to evaluate the efficacy of diverse management practices in sediment control. In the SWAT, three soil and conservation practices, as well as vegetated filter strips (VFSs), grade stabilization structures (GSSs), and terracing were evaluated. The average annual sediment yield in the Seybouse watershed is determined to be 14.43 t/ha year, constituting 71% of the total soil loss. VFS demonstrated a sediment reduction of 37.30%, GSS 20.40%, and terracing 42.30%. Among these strategies, terracing results in the greatest reduction, followed by VFS. The results of this study area can be useful for informed decision-making regarding optimal watershed management strategies.


Asunto(s)
Monitoreo del Ambiente , Sedimentos Geológicos , Sedimentos Geológicos/química , Ríos , Argelia , Modelos Teóricos , Suelo , Agua
5.
Huan Jing Ke Xue ; 45(5): 2727-2740, 2024 May 08.
Artículo en Chino | MEDLINE | ID: mdl-38629536

RESUMEN

Lake wetlands are extremely important and special ecosystems, which are important for regional water resource storage, environmental protection, and biodiversity maintenance. Sediment bacteria are an important component of lake ecosystems and are a major driver of biogeochemical cycling in lakes. In order to investigate the community structure of bacteria in typical lake sediments in Yinchuan City and their influencing factors, three typical lakes in Yinchuan City (Yuehai Lake, Mingcui Lake, and Xiniu Lake) were selected for the study and surface sediments were collected in January, April, July, and October 2021. The composition of the sediment bacterial community was examined using 16S rDNA high-throughput sequencing technology, and the response relationships between them and heavy metals were explored. The results showed that the ecological hazard coefficient for heavy metals in the sediments of three typical lakes in Yinchuan City was far less than 40, and the ecological hazard index was far less than 150, all of which indicated a minor ecological hazard. There were no significant differences in bacterial community diversity among the three lakes, but there were significant variations in diversity among the lakes in different seasons and significant differences in community composition. The dominant phyla (top three in terms of relative abundance) in Yuehai Lake, Mingcui Lake, and Xiniu Lake were Proteobacteria, Bacteroidetes, and Chloroflexi. The dominant lower orders were Gammaproteobacteria, Alphaproteobacteria, and Deltaproteobacteria. The main divergent species that occurred at the phylum level in typical lakes in Yinchuan were Proteobacteria, Bacteroidetes, Euryarchaeota, Firmicutes, Actinobacteria, and Acidobacteria. The sediment bacterial community structure of Yuehai Lake was significantly correlated with Cu, Fe, Mn, Zn, As, and Pb; the sediment bacterial community structure of Lake Mingcui was significantly correlated with Fe, Pb, and Cr; and the sediment bacterial community structure of Xiniu Lake was not significantly correlated with heavy metals. The types and contents of sediment heavy metals had a significant effect on the bacterial community structure of sediments in Yinchuan Yuehai Lake and Mingcui Lake and were important environmental factors that caused changes in the bacterial community structure of lake sediments.


Asunto(s)
Metales Pesados , Contaminantes Químicos del Agua , Lagos/química , Ecosistema , Plomo , Metales Pesados/análisis , Bacterias/genética , Proteobacteria/genética , Sedimentos Geológicos/química , China , Contaminantes Químicos del Agua/análisis , Medición de Riesgo , Monitoreo del Ambiente
6.
Huan Jing Ke Xue ; 45(5): 3098-3106, 2024 May 08.
Artículo en Chino | MEDLINE | ID: mdl-38629570

RESUMEN

In recent years, the environmental pollution of microplastics in Poyang Lake has received increasing attention. Baisha Lake of Poyang Lake was selected as the study area, and samples of water and sediments of Baisha Lake and the microplastics therein were collected, and the polymer types of microplastics were identified as polyethylene (PE), polyester (PET), polypropylene (PP), and polystyrene (PS) using Fourier infrared spectroscopy. We also analyzed the structural composition of bacterial communities in water, in sediments, and on microplastic surfaces using 16S high-throughput sequencing. The species richness and diversity of bacteria on the microplastic surfaces were lower than those in the surrounding water and sediments. The results of NMDS analysis showed that the bacterial community structures on the microplastic surfaces differed greatly from those in the surrounding sediments and water. The bacterial community composition in water and sediment differed from that on the microplastic surfaces, and the dominant bacterial phyla on the microplastic surfaces were Proteobacteria and Bacteroidota, and their relative abundance on the microplastic surfaces was higher than that in sediment. The relative abundance of Proteobacteria was higher than that in water. The relative abundances of Bacteroidota and Actinobacteriota were significantly lower than that of water. Massilia and Pseudomonas were the dominant genera on the microplastic surfaces, and their relative abundances were significantly higher than those in the surrounding water and sediments. BugBase phenotype prediction revealed that the relative abundance of contains mobile elements, biofilm formation, potential pathogenicity, and stress tolerance phenotypes of microplastic bacterial communities were significantly higher than those of the surrounding water and sediments. The results revealed that microplastics may have contributed to the spread of harmful bacteria, including pathogenic bacteria, and increased the potential pathogenicity of bacterial communities. Additionally, microplastic surface bacterial communities had higher phenotypes of mobile gene element content. Revealing the potential harm of microplastic pollution to wetland ecology at the micro level may provide a scientific reference for maintaining the ecological stability of wetlands.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Plásticos/análisis , Lagos/química , Monitoreo del Ambiente , Agua/análisis , Bacterias/genética , Proteobacteria , China , Contaminantes Químicos del Agua/análisis , Sedimentos Geológicos/química
7.
Environ Int ; 186: 108654, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38621322

RESUMEN

Investigating the occurrence of antibiotic-resistance genes (ARGs) in sedimentary archives provides opportunities for reconstructing the distribution and dissemination of historical (i.e., non-anthropogenic origin) ARGs. Although ARGs in freshwater environments have attracted great attention, historical variations in the diversity and abundance of ARGs over centuries to millennia remain largely unknown. In this study, we investigated the vertical change patterns of bacterial communities, ARGs and mobile genetic elements (MGEs) found in sediments of Lake Chenghai spanning the past 600 years. Within resistome preserved in sediments, 177 ARGs subtypes were found with aminoglycosides and multidrug resistance being the most abundant. The ARG abundance in the upper sediment layers (equivalent to the post-antibiotic era since the 1940s) was lower than those during the pre-antibiotic era, whereas the ARG diversity was higher during the post-antibiotic era, possibly because human-induced lake eutrophication over the recent decades facilitated the spread and proliferation of drug-resistant bacteria. Statistical analysis suggested that MGEs abundance and the bacterial community structure were significantly correlated with the abundance and diversity of ARGs, suggesting that the occurrence and distribution of ARGs may be transferred between different bacteria by MGEs. Our results provide new perspectives on the natural history of ARGs in freshwater environments and are essential for understanding the temporal dynamics and dissemination of ARGs.


Asunto(s)
Eutrofización , Sedimentos Geológicos , Lagos , Lagos/microbiología , Sedimentos Geológicos/microbiología , Sedimentos Geológicos/química , Bacterias/genética , Bacterias/efectos de los fármacos , Farmacorresistencia Microbiana/genética , Antibacterianos/análisis , Antibacterianos/farmacología , Genes Bacterianos , China , Farmacorresistencia Bacteriana/genética
8.
J Hazard Mater ; 470: 134288, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38626685

RESUMEN

Steroid hormones are highly potent compounds that can disrupt the endocrine systems of aquatic organisms. This study explored the spatiotemporal distribution of 49 steroid hormones in agricultural soils, ditch water, and sediment from suburban areas of Guangzhou City, China. The average concentrations of Σsteroid hormones in the water, soils, and sediment were 97.7 ng/L, 4460 ng/kg, and 9140 ng/kg, respectively. Elevated hormone concentrations were notable in water during the flood season compared to the dry season, whereas an inverse trend was observed in soils and sediment. These observations were attributed to illegal wastewater discharge during the flood season, and sediment partitioning of hormones and manure fertilization during the dry season. Correlation analysis further showed that population, precipitation, and number of slaughtered animals significantly influenced the spatial distribution of steroid hormones across various districts. Moreover, there was substantial mass transfer among the three media, with steroid hormones predominantly distributed in the sediment (60.8 %) and soils (34.4 %). Risk quotients, calculated as the measured concentration and predicted no-effect concentration, exceeded 1 at certain sites for some hormones, indicating high risks. This study reveals that the risk assessment of steroid hormones requires consideration of their spatiotemporal variability and inter-media mass transfer dynamics in agroecosystems.


Asunto(s)
Agricultura , Monitoreo del Ambiente , Sedimentos Geológicos , Contaminantes del Suelo , Contaminantes Químicos del Agua , China , Sedimentos Geológicos/química , Sedimentos Geológicos/análisis , Contaminantes Químicos del Agua/análisis , Contaminantes del Suelo/análisis , Esteroides/análisis , Suelo/química , Hormonas/análisis , Disruptores Endocrinos/análisis , Ciudades , Medición de Riesgo
9.
Sci Total Environ ; 927: 172151, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38575010

RESUMEN

Legacy disposal of oil and gas produced water (OGPW) to surface water has led to radium contamination in streambed sediment creating a long-term radium source. Increased radium activities pose a potential health hazard to benthic organisms, such as freshwater mussels, as radium is capable of bioaccumulation. This project quantifies the impact of OGPW disposal on adult freshwater mussels, Eurynia dilatata, which were examined along the Allegheny River adjacent to a centralized waste treatment facility (CWT) that historically treated and then discharged OGPW. Radium isotopes (226Ra and 228Ra) were measured in streambed sediment, mussel soft tissue, and mussel hard shell collected upstream, at the outfall, 0.5 km downstream, and 5 km downstream of the CWT. Total radium activity was significantly higher (p < 0.05) in mussel tissue (mean = 3.44 ± 0.95 pCi/g), sediment (mean = 1.45 ± 0.19 pCi/g), and hard shell (mean = 0.34 ± 0.11 pCi/g) samples 0.5 km downstream than background samples collected upstream (mean = 1.27 ± 0.24; 0.91 ± 0.09; 0.10 ± 0.02 pCi/g respectively). Mussel shells displayed increased 226Ra activities up to 5 km downstream of the original discharge. Downstream soft tissue and hard shell 87Sr/86Sr ratios, as well as hard shell metal/calcium (e.g., Na/Ca; K/Ca; Mg/Ca) and 228Ra/226Ra ratios demonstrated trends towards values characteristic of Marcellus OGPW. Combined, this study demonstrates multiple lines of evidence for radium retention and bioaccumulation in freshwater mussels resulting from exposure to Marcellus OGPW.


Asunto(s)
Bivalvos , Radio (Elemento) , Contaminantes Radiactivos del Agua , Animales , Contaminantes Radiactivos del Agua/análisis , Bivalvos/metabolismo , Radio (Elemento)/análisis , Monitoreo de Radiación , Agua Dulce , Sedimentos Geológicos/química
10.
Sci Total Environ ; 927: 172159, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38575032

RESUMEN

Sediment contamination by heavy metals is a pressing environmental concern. While in situ metal stabilization techniques have shown promise, a great challenge remains in the simultaneous immobilization of multi-metals co-existing in contaminated sediments. This study aims to address this challenge by developing a practical method for stabilizing multi-metals by hydroxyapatite and calcium peroxide (HAP/CaO2) dosing strategies. Results showed that dosing 15.12 g of HAP/CaO2 at a ratio of 3:1 effectively transformed labile metals into stable fractions, reaching reaction kinetic equilibrium within one month with a pseudo-second-order kinetic (R2 > 0.98). The stable fractions of Nickel (Ni), Chromium (Cr), and lead (Pb) increased by approximately 16.9 %, 26.7 %, and 21.9 %, respectively, reducing heavy metal mobility and ensuring leachable concentrations complied with the stringent environmental Class I standard. Mechanistic analysis indicated that HAP played a crucial role in Pb stabilization, exhibiting a high rate of 0.0176 d-1, while Cr and Ni stabilization primarily occurred through the formation of hydroxide precipitates, as well as the slowly elevated pH (>8.5). Importantly, the proposed strategy poses a minimal environmental risk to benthic organisms exhibits almost negligible toxicity towards Vibrio fischeri and the Chironomus riparius, and saves about 71 % of costs compared to kaolinite. These advantages suggest the feasibility of HAP/CaO2 dosing strategies in multi-metal stabilization in contaminated sediments.


Asunto(s)
Durapatita , Peróxidos , Contaminantes Químicos del Agua , Durapatita/química , Contaminantes Químicos del Agua/análisis , Peróxidos/química , Metales Pesados , Sedimentos Geológicos/química , Restauración y Remediación Ambiental/métodos
11.
Sci Rep ; 14(1): 8318, 2024 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-38594356

RESUMEN

The Danube is a significant transboundary river on a global scale, with several tributaries. The effluents from industrial operations and wastewater treatment plants have an impact on the river's aquatic ecosystem. These discharges provide a significant threat to aquatic life by deteriorating the quality of water and sediment. Hence, a total of 16 Polycyclic Aromatic Hydrocarbons (PAHs) compounds were analyzed at six locations along the river, covering a period of 12 months. The objective was to explore the temporal and spatial fluctuations of these chemicals in both water and sediment. The study revealed a significant fluctuation in the concentration of PAHs in water throughout the year, with levels ranging from 224.8 ng/L during the summer to 365.8 ng/L during the winter. Similarly, the concentration of PAHs in sediment samples varied from 316.7 ng/g in dry weight during the summer to 422.9 ng/g in dry weight during the winter. According to the Europe Drinking Water Directive, the levels of PAHs exceeded the permitted limit of 100 ng/L, resulting in a 124.8% rise in summer and a 265.8% increase in winter. The results suggest that the potential human-caused sources of PAHs were mostly derived from pyrolytic and pyrogenic processes, with pyrogenic sources being more dominant. Assessment of sediment quality standards (SQGs) showed that the levels of PAHs in sediments were below the Effect Range Low (ERL), except for acenaphthylene (Acy) and fluorene (Fl) concentrations. This suggests that there could be occasional biological consequences. The cumulative Individual Lifetime Cancer Risk (ILCR) exceeds 1/104 for both adults and children in all sites.


Asunto(s)
Hidrocarburos Policíclicos Aromáticos , Contaminantes Químicos del Agua , Niño , Humanos , China , Ecosistema , Monitoreo del Ambiente/métodos , Sedimentos Geológicos/química , Hungría , Hidrocarburos Policíclicos Aromáticos/análisis , Medición de Riesgo , Ríos/química , Agua , Contaminantes Químicos del Agua/análisis , Adulto
12.
J Hazard Mater ; 470: 134167, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38598880

RESUMEN

This study investigated the leaching of phthalate and non-phthalate plasticizers from polyvinyl chloride microplastics (MPs) into sediment and their degradation over a 30-d period via abiotic and biotic processes. The results showed that 3579% of plasticizers were released into the sediment from the MPs and > 99.9% degradation was achieved. Although a significantly higher degradation was found in plasticizer-added microcosms under biotic processes (overall, 94%), there was a noticeable abiotic loss (72%), suggesting that abiotic processes also play a role in plasticizer degradation. Interestingly, when compared with the initial sediment-water partitioning for plasticizers, the partition constants for low-molecular-weight compounds decreased in both microcosms, whereas those for high-molecular-weight compounds increased after abiotic degradation. Furthermore, changes in the bacterial community, abundance of plasticizer-degrading bacterial populations, and functional gene profiles were assessed. In all the microcosms, a decrease in bacterial community diversity and a notable shift in bacterial composition were observed. The enriched potential plasticizer-degrading bacteria were Arthrobacter, Bacillus, Desulfovibrio, Desulfuromonas, Devosia, Gordonia, Mycobacterium, and Sphingomonas, among which Bacillus was recognized as the key plasticizer degrader. Overall, these findings shed light on the factors affecting plasticizer degradation, the microbial communities potentially involved in biodegradation, and the fate of plasticizers in the environment.


Asunto(s)
Bacterias , Sedimentos Geológicos , Microplásticos , Ácidos Ftálicos , Plastificantes , Cloruro de Polivinilo , Contaminantes Químicos del Agua , Cloruro de Polivinilo/química , Plastificantes/metabolismo , Sedimentos Geológicos/microbiología , Sedimentos Geológicos/química , Ácidos Ftálicos/metabolismo , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/metabolismo , Bacterias/metabolismo , Bacterias/clasificación , Biodegradación Ambiental
13.
PLoS One ; 19(4): e0299562, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38662683

RESUMEN

Elemental ratios (δ13C, δ15N and C/N) and carbon and nitrogen concentrations in macrophytes, sediments and sponges of the hypersaline Al-Kharrar Lagoon (KL), central eastern Red Sea coast, were measured to distinguish their sources, pathways and see how they have been influenced by biogeochemical processes and terrestrial inputs. The mangroves and halophytes showed the most depleted δ13C values of -27.07±0.2 ‰ and -28.34±0.4 ‰, respectively, indicating their preferential 12C uptake, similar to C3-photosynthetic plants, except for the halophytes Atriplex sp. and Suaeda vermiculata which showed δ13C of -14.31±0.6 ‰, similar to C4-plants. Macroalgae were divided into A and B groups based on their δ13C values. The δ13C of macroalgae A averaged -15.41±0.4 ‰, whereas macroalgae B and seagrasses showed values of -7.41±0.8 ‰ and -7.98 ‰, suggesting uptake of HCO3- as a source for CO2 during photosynthesis. The δ13C of sponges was -10.7±0.3 ‰, suggesting that macroalgae and seagrasses are their main favoured diets. Substrates of all these taxa showed δ13C of -15.52±0.8 ‰, suggesting the KL is at present a macroalgae-dominated lagoon. The δ15N in taxa/sediments averaged 1.68 ‰, suggesting that atmospheric N2-fixation is the main source of nitrogen in/around the lagoon. The heaviest δ15N (10.58 ‰) in halophytes growing in algal mats and sabkha is possibly due to denitrification and ammonia evaporation. The macrophytes in the KL showed high C %, N %, and C/N ratios, but this is not indicated in their substrates due possibly to a rapid turnover of dense, hypersaline waters carrying most of the detached organic materials out into the Red Sea. The δ13C allowed separation of subaerial from aquatic macrophytes, a proxy that could be used when interpreting paleo-sea level or paleoclimatic changes from the coastal marine sediments.


Asunto(s)
Isótopos de Carbono , Carbono , Sedimentos Geológicos , Isótopos de Nitrógeno , Nitrógeno , Nitrógeno/metabolismo , Nitrógeno/análisis , Sedimentos Geológicos/química , Sedimentos Geológicos/análisis , Arabia Saudita , Carbono/metabolismo , Carbono/análisis , Isótopos de Nitrógeno/análisis , Isótopos de Nitrógeno/metabolismo , Isótopos de Carbono/análisis , Océano Índico , Algas Marinas/metabolismo , Plantas/metabolismo
14.
Nat Commun ; 15(1): 3439, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38653759

RESUMEN

Oxygen in marine sediments regulates many key biogeochemical processes, playing a crucial role in shaping Earth's climate and benthic ecosystems. In this context, branched glycerol dialkyl glycerol tetraethers (brGDGTs), essential biomarkers in paleoenvironmental research, exhibit an as-yet-unresolved association with sediment oxygen conditions. Here, we investigated brGDGTs in sediments from three deep-sea regions (4045 to 10,100 m water depth) dominated by three respective trench systems and integrated the results with in situ oxygen microprofile data. Our results demonstrate robust correlations between diffusive oxygen uptake (DOU) obtained from microprofiles and brGDGT methylation and isomerization degrees, indicating their primary production within sediments and their strong linkage with microbial diagenetic activity. We establish a quantitative relationship between the Isomerization and Methylation index of Branched Tetraethers (IMBT) and DOU, suggesting its potential validity across deep-sea environments. Increased brGDGT methylation and isomerization likely enhance the fitness of source organisms in deep-sea habitats. Our study positions brGDGTs as a promising tool for quantifying benthic DOU in deep-sea settings, where DOU is a key metric for assessing sedimentary organic carbon degradation and microbial activity.


Asunto(s)
Bacterias , Sedimentos Geológicos , Oxígeno , Sedimentos Geológicos/microbiología , Sedimentos Geológicos/química , Oxígeno/metabolismo , Oxígeno/química , Bacterias/metabolismo , Bacterias/genética , Ecosistema , Éteres/metabolismo , Éteres/química , Lípidos/química , Metilación , Agua de Mar/microbiología , Agua de Mar/química
15.
Geobiology ; 22(2): e12589, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38465505

RESUMEN

The Black Sea is a permanently anoxic, marine basin serving as model system for the deposition of organic-rich sediments in a highly stratified ocean. In such systems, archaeal lipids are widely used as paleoceanographic and biogeochemical proxies; however, the diverse planktonic and benthic sources as well as their potentially distinct diagenetic fate may complicate their application. To track the flux of archaeal lipids and to constrain their sources and turnover, we quantitatively examined the distributions and stable carbon isotopic compositions (δ13 C) of intact polar lipids (IPLs) and core lipids (CLs) from the upper oxic water column into the underlying sediments, reaching deposits from the last glacial. The distribution of IPLs responded more sensitively to the geochemical zonation than the CLs, with the latter being governed by the deposition from the chemocline. The isotopic composition of archaeal lipids indicates CLs and IPLs in the deep anoxic water column have negligible influence on the sedimentary pool. Archaeol substitutes tetraether lipids as the most abundant IPL in the deep anoxic water column and the lacustrine methanic zone. Its elevated IPL/CL ratios and negative δ13 C values indicate active methane metabolism. Sedimentary CL- and IPL-crenarchaeol were exclusively derived from the water column, as indicated by non-variable δ13 C values that are identical to those in the chemocline and by the low BIT (branched isoprenoid tetraether index). By contrast, in situ production accounts on average for 22% of the sedimentary IPL-GDGT-0 (glycerol dibiphytanyl glycerol tetraether) based on isotopic mass balance using the fermentation product lactate as an endmember for the dissolved substrate pool. Despite the structural similarity, glycosidic crenarchaeol appears to be more recalcitrant in comparison to its non-cycloalkylated counterpart GDGT-0, as indicated by its consistently higher IPL/CL ratio in sediments. The higher TEX86 , CCaT, and GDGT-2/-3 values in glacial sediments could plausibly result from selective turnover of archaeal lipids and/or an archaeal ecology shift during the transition from the glacial lacustrine to the Holocene marine setting. Our in-depth molecular-isotopic examination of archaeal core and intact polar lipids provided new constraints on the sources and fate of archaeal lipids and their applicability in paleoceanographic and biogeochemical studies.


Asunto(s)
Archaea , Éteres de Glicerilo , Agua , Archaea/química , Mar Negro , Sedimentos Geológicos/química , Glicerol , Lípidos/química , Agua de Mar/química
16.
Huan Jing Ke Xue ; 45(3): 1849-1858, 2024 Mar 08.
Artículo en Chino | MEDLINE | ID: mdl-38471896

RESUMEN

Microplastic pollution poses threats to aquatic ecosystems and human health. In this study, in order to investigate the characteristics of microplastic occurrence in different environmental media, the abundance, particle size, shape, color, and composition types of microplastics in the water column, sediment, riparian zone soil, and the benthic snail Bellamya aeruginosa of the Manao River were analyzed using field sampling, microscopic observation, and Fourier infrared spectroscopy. The results showed that the average abundance of microplastics in the surface water of the Manao River was (5.9±0.26) n·L-1; the abundance of microplastics in the upper sediment (by dry weight) was (1.35±0.1) n·g-1, and that in the lower sediment (by dry weight) was (0.93±0.12) n·g-1. The abundance of microplastics in the near riparian zone soil (by dry weight) was (0.68±0.16) n·g-1, and that in the far riparian zone soil (by dry weight) was (0.69±0.14) n·g-1, and the abundance of microplastics in the B. aeruginosa was (2.06±0.25) n·g-1. The analysis results showed that the abundance of microplastics in the upper and lower sediments were positively correlated; the abundance of microplastics in B. aeruginosa was positively correlated with the abundance of microplastics in the upper and lower sediments, respectively; and the abundance of microplastics in the near and far riparian zone soils were also correlated. Most of the microplastics within each environmental medium and B. aeruginosa were <0.1 mm in size, mainly in the form of fibers and fragments, mainly blue and black in color, and mainly composed of polypropylene (PP) and polyethylene (PE). It was found that microplastics in riparian zone soils mainly originated from the fragmentation and decomposition of agricultural plastic films. The results of this study shed light on the accumulation of microplastics in macrobenthic organisms through the investigation of microplastics in multi-environmental media and in the B. aeruginosa, which helps us to understand the potential ecological risk of microplastics in a comprehensive manner.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Humanos , Plásticos , Pseudomonas aeruginosa , Ríos , Ecosistema , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente , Sedimentos Geológicos/química , Agua , Suelo
17.
Environ Toxicol Chem ; 43(5): 1036-1046, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38517157

RESUMEN

Digesta were collected from the intestines of seven species of bottom-feeding fish to better understand the role of incidental ingestion of sediment in exposing fish to inorganic contaminants. A composite sediment tracer variable, based on concentrations of Co, Cr, Ni, Ti, V, and Y in digesta and in sediment, was calculated to estimate sediment content of digesta. Concentration factors (mg/kg in digesta divided by mg/kg in sediment) of eight elements of interest were linearly regressed on this tracer variable. The relative importance of sediment ingestion to oral exposure was quantified. Zinc, Cd, and Cu were ingested mainly from sediment-free food. Arsenic, Cr, Ni, Al, and Pb, in contrast, were ingested mainly from sediment. As an example, 93% of the Ni in digesta from a brown bullhead (Ameiurus nebulosus) was from sediment and only 7% from food. Regressions of Al and Pb in digesta of suckers (Catostomidae) suggested an additional oral source, possibly from oxides coating biotic or abiotic surfaces. Overall, concentrations of 12 of 21 elements studied were positively correlated with sediment content (p < 0.005). Including sediment ingestion as a pathway for bottom-feeding fish is essential for accurately estimating exposures in toxicological studies. Environ Toxicol Chem 2024;43:1036-1046. Published 2024. This article is a U.S. Government work and is in the public domain in the USA.


Asunto(s)
Peces , Sedimentos Geológicos , Contaminantes Químicos del Agua , Animales , Sedimentos Geológicos/química , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
18.
Environ Toxicol Chem ; 43(5): 1047-1061, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38450757

RESUMEN

Anthropogenically modified microparticles including microplastics are present in municipal wastewater treatment plant (WWTP) effluents; however, it is unclear whether biotic exposures are elevated downstream of these outfalls. In the fall of 2019, the present study examined whether microparticle levels in resident fish, environmental samples, and caged organisms were elevated near the Waterloo and Kitchener WWTP outfalls along the Grand River, Ontario, Canada. Wild rainbow darters (Etheostoma caeruleum) were collected from a total of 10 sites upstream and downstream of both WWTPs, along with surface water and sediment samples to assess spatial patterns over an approximately 70-km river stretch. Amphipods (Hyalella azteca), fluted-shell mussels (Lasmigona costata), and rainbow trout (Oncorhynchus mykiss) were also caged upstream and downstream of one WWTP for 14 or 28 days. Whole amphipods, fish digestive tracts, and mussel tissues (hemolymph, digestive glands, gills) were digested with potassium hydroxide, whereas environmental samples were processed using filtration and density separation. Visual identification, measurement, and chemical confirmation (subset only) of microparticles were completed. Elevated abiotic microparticles were found at several upstream reference sites as well as at one or both wastewater-impacted sites. Microparticles in amphipods, all mussel tissues, and wild fish did not show patterns indicative of increased exposures downstream of effluent discharges. In contrast, elevated microparticle counts were found in trout caged directly downstream of the outfall. Across all samples, cellulose fibers (mainly blue and clear colors) were the most common. Overall, results suggest little influence of WWTP effluents on microparticles in biota but rather a ubiquitous presence across most sites that indicates the importance of other point and nonpoint sources to this system. Environ Toxicol Chem 2024;43:1047-1061. © 2024 His Majesty the King in Right of Canada and The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC. Reproduced with the permission of the Minister of Environment and Climate Change Canada.


Asunto(s)
Bivalvos , Monitoreo del Ambiente , Sedimentos Geológicos , Aguas Residuales , Contaminantes Químicos del Agua , Animales , Contaminantes Químicos del Agua/análisis , Aguas Residuales/química , Sedimentos Geológicos/química , Anfípodos , Microplásticos/análisis , Biota , Ontario , Oncorhynchus mykiss , Eliminación de Residuos Líquidos , Ríos/química
19.
Environ Sci Pollut Res Int ; 31(18): 26880-26894, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38456979

RESUMEN

Salt marshes are capable of mitigating metal pollution in coastal environments, yet the efficacy of this remediation is contingent upon various environmental factors and the plant species involved. This study investigates the influence of different anthropogenic activities, including industrial, urban, recreational (in an insular area), and dredging operations, on the bioaccumulation of eight metals (As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn) within Spartina alterniflora Loisel. in the Patos Lagoon estuary, Brazil. The research aims to assess the pattern of metal bioaccumulation and distribution within the plant's leaves, stems, and roots while also examining metal presence in the sediment. Our main findings reveal that S. alterniflora exhibited elevated metal levels in its plant structure directly related with the metal concentrations in the surrounding sediment, which, in turn, is related to the different anthropogenic activities. The industrial area presented the highest metal levels in sediment and plant sections, followed by dredging, insular, and urban areas. This same pattern was mirrored for the bioconcetration factors (BCF), with the BCFs consistently indicating active metal bioaccumulation across all areas and for most of the metals. This provides evidence of the metal bioaccumulation pattern in S. alterniflora, with elevated BCFs in areas affected by activities with a higher degree of impact. Translocation factors (TF) showed varying metal mobility patterns within the plant's below-ground and above-ground sections across the different areas, with only Hg exhibiting consistent translocation across all study areas. Zn was the primary metal contributor in all plant sections, followed by Pb and Cu. It is worth noting that Pb is a non-essential metal for this plant, highlighting the relationship between elevated Pb contributions in the plant sections and the bioaccumulation of this metal within the plant's structure. Overall, this study emphasizes the bioaccumulation capacity of S. alterniflora and elucidate the intrinsic connection between different anthropogenic activities and their impact on the resultant availability and bioaccumulation of metals by this salt marsh plant.


Asunto(s)
Bioacumulación , Monitoreo del Ambiente , Estuarios , Metales , Poaceae , Humedales , Poaceae/metabolismo , Brasil , Metales/metabolismo , Contaminantes Químicos del Agua/metabolismo , Metales Pesados/metabolismo , Sedimentos Geológicos/química
20.
Environ Pollut ; 348: 123882, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38548157

RESUMEN

The assessment of microplastic (MP) pollution in urban areas is essential considering its abundance in freshwater, particularly due to urban wet weather discharge. The precise sources of MPs must be identified to better understand its characteristics. This study examines the relationship between MP pollution in detention basin sediments and land use in the investigated catchments. The study of stormwater management infrastructure, mainly in detention basins, has enabled the quantification of MP abundance in sediments conveyed by stormwater in urban areas. Sediment sampling was conducted in ten detention basins and one combined sewer overflow (CSO) structure in the Lyon metropolitan area, France. These basins correspond to stormwater outlets of representative urban catchment areas. MP extraction involves densimetric separation and organic matter degradation. MPs were then characterized using micro-Fourier infrared spectroscopy and siMPle software. This protocol identified MPs between 50 and 500 µm in the study sites. This study highlights the high abundance in the collected sediment samples, ranging from 2,525 to 1,218,82 MP kg-1 by dry weight sediment. The MPs found have a median size around 115 µm, making them very small MPs that are mainly composed of polypropylene followed by polyethylene and polystyrene or polyethylene terephthalate. The abundance of MPs in sediments is associated with the land use type. Catchments in predominantly industrial and commercial zones were more significantly polluted with MPs compared with those in predominantly agricultural or heterogeneous zones. Finally, statistical analyses revealed links between sedimentary and urban parameters and MPs concentrations. Several recommendations are given for future research, notably concerning the analyzing of stormwater sediments to understand the sources of MP pollution.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Microplásticos/análisis , Plásticos/análisis , Sedimentos Geológicos/química , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...